Tracking morphologies at the nanoscale: self-assembly of an amphiphilic designer peptide into a double helix superstructure.

نویسندگان

  • Karin Kornmueller
  • Ilse Letofsky-Papst
  • Kerstin Gradauer
  • Christian Mikl
  • Fernando Cacho-Nerin
  • Mario Leypold
  • Walter Keller
  • Gerd Leitinger
  • Heinz Amenitsch
  • Ruth Prassl
چکیده

Hierarchical self-assembly is a fundamental principle in nature, which gives rise to astonishing supramolecular architectures that offer an inspiration for the development of innovative materials in nanotechnology. Here we present the unique structure of a cone-shaped amphiphilic designer peptide. When tracking its concentration-dependent morphologies, we observed elongated bilayered single tapes at the beginning of the assembly process, which further developed into novel double-helix-like superstructures at increased concentrations. This architecture is characterized by a tight intertwisting of two individual helices, resulting in a periodic pitch size over their total lengths of several hundred nanometers. Solution X-ray scattering data revealed a marked 2-layered internal organization. All these characteristics remained unaltered for the investigated period of almost three months. In their collective morphology the assemblies are integrated into a network with hydrogel characteristics. Such a peptide based structure holds promise for a building block of next-generation nanostructured biomaterials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity

Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide-membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phosph...

متن کامل

Polypeptide-Based Nanoscale Materials

Self-assembly has emerged as a promising technique for fabrication of novel hybrid materials and nanostructures. The work presented in this thesis has been focused on developing nanoscale materials based on synthetic de novo designed polypeptides. The polypeptides have been utilized for the assembly of gold nanoparticles, fibrous nanostructures, and for sensing applications. The 42-residue poly...

متن کامل

Self-Assembly of Amphiphilic Block Copolymers in Selective Solvents

For the last decades, amphiphilic block copolymers have been at the focus of extensive scientific interest, due to their unique properties and numerous potential applications. Their technological potential evolves from their ability to self-assemble into a plethora of morphologically diverse nanostructures such as micelles, polymersomes, cylinders and others. In this chapter, we discuss the bas...

متن کامل

Peptide–oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of pe...

متن کامل

Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant.

We report here the donut-shaped nanostructure formation from the self-assembly of a designer lipid-like amphiphilic cone-shaped peptide. The critical aggregation concentration was measured using dynamic light scattering in water and phosphate-buffered saline. The dynamic self-assembly of the peptide was also studied using atomic force microscopy. We have studied numerous peptides over 17 years,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano research

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2015